1=2560/(d^2)

Simple and best practice solution for 1=2560/(d^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=2560/(d^2) equation:



1=2560/(d^2)
We move all terms to the left:
1-(2560/(d^2))=0
Domain of the equation: d^2)!=0
d!=0/1
d!=0
d∈R
We get rid of parentheses
-2560/d^2+1=0
We multiply all the terms by the denominator
1*d^2-2560=0
We add all the numbers together, and all the variables
d^2-2560=0
a = 1; b = 0; c = -2560;
Δ = b2-4ac
Δ = 02-4·1·(-2560)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*1}=\frac{0-32\sqrt{10}}{2} =-\frac{32\sqrt{10}}{2} =-16\sqrt{10} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*1}=\frac{0+32\sqrt{10}}{2} =\frac{32\sqrt{10}}{2} =16\sqrt{10} $

See similar equations:

| 6x+21=10x-7 | | -15=8q-50-5q | | 8x−7=8x+5 | | 4×(x+3)=5×(x-2) | | -61-p+8)=-6p+12 | | 3x+25=5x-10 | | q+15=26 | | 5.i=0 | | 4x+17=3x+10 | | 4x-5+3=10 | | 10^2-39y+36=0 | | 3/4(1/4X+8)-(1/2x+2)=3/8(4-1/4X | | -4-6x=-6(3-x)-5x | | 3x+6+9x+30=90 | | 13x+2=3(4x+1) | | 4-2(3-x)=8x+10 | | 4-3(2x-6)=-x-3 | | -3=-6/5x | | 1,2x+3,7=7,06 | | 4m=-6=14 | | 7y+2=3y+4=14y-26 | | 8x+1=4x+6 | | 1,2x+3,7=3,16 | | .5((x-158)+110)=134 | | 7y+2=3y+4 | | -10p-3(6-6p)=6(p-6)-6 | | -x-8=4x+17 | | 8x-(2x+9)=8x-13 | | 17x+3-12x=8x+9 | | 7-3x=28-4x | | -10=-3t+2 | | 8x+3x+3-2=90 |

Equations solver categories